Adam Kocsis
Adam Kocsis
Dr. Adam Kocsis
- 2016 PhD in paleontology, Doctoral School of Earth Sciences at the Eötvös University, Budapest
- 2012 MSc in geology (paleontology specialization), Eötvös University, Budapest
Authored Books
Hotspots of cenozoic tropical marine biodiversity
CRC Press, 2022
ISBN: 9781000781113
DOI: 10.1201/9781003288602-5
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , :
Journal Articles
Increasing the equitability of data citation in paleontology: capacity building for the big data future
In: Paleobiology (2023)
ISSN: 0094-8373
DOI: 10.1017/pab.2023.33
URL: https://www.cambridge.org/core/journals/paleobiology/article/increasing-the-equitability-of-data-citation-in-paleontology-capacity-building-for-the-big-data-future/5DE206ED3B51F7064E8FD60CA77E8D73
, , , , , , , , , , , , , , :
Oversimplification risks too much: A response to 'How predictable are mass extinction events?'
In: Royal Society Open Science 10 (2023), Article No.: 230400
ISSN: 2054-5703
DOI: 10.1098/rsos.230400
, , , , , , , , :
BioDeepTime: A database of biodiversity time series for modern and fossil assemblages
In: Global Ecology and Biogeography (2023)
ISSN: 1466-822X
DOI: 10.1111/geb.13735
, , , , , , , , , , , , , , , , , , , , , , , :
Climate change disrupts core habitats of marine species
In: Global Change Biology (2023)
ISSN: 1354-1013
DOI: 10.1111/gcb.16612
, , , , , , , , , , , :
Coupling of geographic range and provincialism in Cambrian marine invertebrates
In: Paleobiology (2022)
ISSN: 0094-8373
DOI: 10.1017/pab.2022.36
, , , :
fossilbrush: An R package for automated detection and resolution of anomalies in palaeontological occurrence data
In: Methods in Ecology and Evolution (2022)
ISSN: 2041-210X
DOI: 10.1111/2041-210X.13966
, , , :
Global warming generates predictable extinctions of warm- and cold-water marine benthic invertebrates via thermal habitat loss
In: Global Change Biology (2022)
ISSN: 1354-1013
DOI: 10.1111/gcb.16333
, , , :
Increase in marine provinciality over the last 250 million years governed more by climate change than plate tectonics
In: Proceedings of the Royal Society of London, Series B: Biological Sciences 288 (2021)
ISSN: 0962-8452
DOI: 10.1098/rspb.2021.1342
, , , , :
Mapping paleocoastlines and continental flooding during the Phanerozoic
In: Earth-Science Reviews 213 (2021), Article No.: 103463
ISSN: 0012-8252
DOI: 10.1016/j.earscirev.2020.103463
, :
Corrigendum to: Marine invertebrate migrations trace climate change over 450 million years (Global Ecology and Biogeography, (2018), 27, 6, (704-713), 10.1111/geb.12732)
In: Global Ecology and Biogeography 29 (2020), p. 1280-1282
ISSN: 1466-822X
DOI: 10.1111/geb.13114
, , :
Changes in calcareous nannoplankton assemblages around the Eocene-Oligocene climate transition in the Hungarian Palaeogene Basin (Central Paratethys)
In: Historical Biology (2020)
ISSN: 0891-2963
DOI: 10.1080/08912963.2019.1705295
, , :
Biodiversity patterns across the Late Paleozoic Ice Age
In: Palaeontologia Electronica (2020)
ISSN: 1094-8074
DOI: 10.26879/1047
, , :
Marine clade sensitivities to climate change conform across timescales
In: Nature Climate Change (2020)
ISSN: 1758-678X
DOI: 10.1038/s41558-020-0690-7
, , , , :
Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming
In: Global Change Biology (2020)
ISSN: 1354-1013
DOI: 10.1111/gcb.15434
, , , :
Mass extinctions and clade extinctions in the history of brachiopods: Brief review and a post-paleozoic case study
In: Rivista Italiana Di Paleontologia E Stratigrafia 125 (2019), p. 711-724
ISSN: 0035-6883
, , :
The r package divDyn for quantifying diversity dynamics using fossil sampling data
In: Methods in Ecology and Evolution (2019)
ISSN: 2041-210X
DOI: 10.1111/2041-210X.13161
, , , :
Climate change and the latitudinal selectivity of ancient marine extinctions
In: Paleobiology (2018), p. 1–15
ISSN: 0094-8373
DOI: 10.1017/pab.2018.34
, , :
Marine invertebrate migrations trace climate change over 450 million years
In: Global Ecology and Biogeography 27 (2018), p. 704-713
ISSN: 1466-822X
DOI: 10.1111/geb.12732
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.12732
, , :
The biogeographical imprint of mass extinctions
In: Proceedings of the Royal Society of London, Series B: Biological Sciences 285 (2018)
ISSN: 0962-8452
DOI: 10.1098/rspb.2018.0232
URL: http://rspb.royalsocietypublishing.org/content/285/1878/20180232
, , :
A triász és a jura időszak határán lezajlott globális krízis és annak nyomai magyarországi rétegsorokban
In: Foldtani Kozlony 148 (2018), p. 9--26
ISSN: 0015-542X
DOI: 10.23928/foldt.kozl.2018.148.1.9
, , , , :
Reliable estimates of beta diversity with incomplete sampling
In: Ecology 99 (2018), p. 1051-1062
ISSN: 0012-9658
DOI: 10.1002/ecy.2201
, , , :
The stability of coastal benthic biogeography over the last 10 million years
In: Global Ecology and Biogeography 27 (2018), p. 1106-1120-1120
ISSN: 1466-822X
DOI: 10.1111/geb.12771
, , :
Changes in terrestrial floras at the Triassic-Jurassic Boundary in Europe
In: Palaeogeography, Palaeoclimatology, Palaeoecology 480 (2017), p. 80-93
ISSN: 0031-0182
DOI: 10.1016/j.palaeo.2017.05.024
, , , , , :
Adding fossil occupancy trajectories to the assessment of modern extinction risk
In: Biological Letters 12 (2016)
ISSN: 1644-7700
DOI: 10.1098/rsbl.2015.0813
URL: http://rsbl.royalsocietypublishing.org/content/12/10/20150813.abstract
, :
Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event
In: Palaeogeography, Palaeoclimatology, Palaeoecology 457 (2016), p. 233-241-241
ISSN: 0031-0182
DOI: 10.1016/j.palaeo.2016.06.022
URL: http://www.sciencedirect.com/science/article/pii/S0031018216302140
, , :
A Paleobiology Database szerepe a modern őslénytani kutatásban
In: Foldtani Kozlony 145 (2015), p. 85--98
ISSN: 0015-542X
, , :
Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals
In: Paleobiology 41 (2015), p. 402-414
ISSN: 0094-8373
DOI: 10.1017/pab.2015.6
, :
Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate causes of the end-Triassic mass extinction
In: Paleobiology 40 (2014), p. 625--639
ISSN: 0094-8373
DOI: 10.1666/14007
, , :
Volcanism of the Central Atlantic magmatic province as the trigger of environmental and biotic changes around the Triassic-Jurassic boundary
In: Special Paper of the Geological Society of America 505 (2014), p. SPE505--12
ISSN: 0072-1077
DOI: 10.1130/2014.2505(12)
URL: http://specialpapers.gsapubs.org/content/early/2014/08/21/2014.2505_12
, :
Conference Contributions
Chronosphere: Earth System History Variables
GSA 2020 Connects Online (Online, 26. October 2020 - 30. October 2020)
DOI: 10.1130/abs/2020AM-357374
URL: https://gsa.confex.com/gsa/2020AM/webprogram/Paper357374.html
, :
ImageJ and 3D Slicer : open source 2 / 3D morphometric software
Annual Meeting of the Paleontological Society (Paläontologische Gesellschaft) 2019 (Munich, 15. September 2019 - 18. September 2019)
In: Open Data and Analysis: from morphology to evolutionary patterns 2019
DOI: 10.7287/peerj.preprints.27998
, , , , , , :
The Late Paleozoic Ice Age (LPIA) – Turnover rates during a phase of major climatic changes
Jahrestagung der Paläontologischen Gesellschaft in München (München, 15. September 2019 - 18. September 2019)
, , , :
Turnover rates of Paleozoic and modern taxa during the Late Paleozoic Ice Age
GSA Annual Meeting (Phoenix, 22. September 2019 - 25. September 2019)
DOI: 10.1130/abs/2019am-336433
, , , :
-
Spatial patterns of global diversity dynamics in warming scenarios (SPex)
(Third Party Funds Single)
Term: 1. October 2019 - 30. September 2022
Funding source: Deutsche Forschungsgemeinschaft (DFG)Current climate change is expected to have a definite effect on the global marine biota and will likely lead to not only local, but also global extinctions. Species distributions rearrangeduring global warming; marine species track the isotherms of their thermal niches and studies suggest that low-latitude species will be more affected by local extinctions (extirpations). Predictions on the geographic patternsof complete extinctions are lacking, although past mass extinctions are often invoked as analogues for possible future scenarios. Inference on the causes of mass extinctions is often based on recorded geographic patterns ofspecies extinctions, but the relationship between warming and these patterns is based on assumptions and thought experiments, rather than spatially explicit models that consider Earth’s geometry, stochastic processesand multitudes of species.
Project SPex addresses this issue by simulating extinction scenarios, which I organize around the central hypothesis that extensive warming leads to pronounced geographic patterns of extinctions,preferentially affecting lower latitudes. To assess this and associated hypotheses, I will construct a high-performance modelling framework of species distributions with cellular automata, and simulate spatially explicit bioticresponses to warming with increasing system complexity: in theoretical settings first, and then using data of recorded, warming-related mass extinction scenarios.
With the cellular automaton approach, assigned temperature niches can be used to limit species distributions, while other influencing variables can be modelled as random processes that expandor contract geographic ranges of thousands of virtual species. Both recent (OBIS, Aquamaps) and fossil (Paleobiology Database) biotic data will be used to constrain the models that will also incorporate continent reconstructionsand general circulation modelling results. Abiotic input data will be used to reconstruct possible scenarios of hyperthermals, such as the Permian/Triassic, Triassic/Jurassic and Pliensbachian/Toarcian events, as well as thePaleocene-Eocene Thermal Maximum. Patterns of future extinctions will also be assessed using modelled abiotic parameters of simplified scenarios beyond RCP8.5. Simulation patterns will also be contrasted with extirpation andinvasion patterns of gridded fossil data. Thus, the project intends to integrate past mass extinctions and future settings by adding invasions and extirpations to the past and species extinctions to predicted future scenarios.
-
Quantifying and tracing marine biogeography over the Phanerozoic
(Third Party Funds Single)
Term: 1. August 2018 - 31. July 2019
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Outlining and understanding the geographic structuring of biodiversity is a major challenge both for modern and past ecosystems. Different approaches to delineate biogeographic unitsare currently applied, which result in vastly different patterns. In order to objectively define biogeographic provinces, I propose a two-year research project to develop quantitative methods that outline biogeographical unitsbased on marine organismic occurrence data. The so-defined units will allow the assessment of between-unit, beta-level diversity patterns over the Phanerozoic as well. This will enable the scrutinization of hypotheses such as that continent configuration drives global marine beta diversity patterns, and that beta diversity drops in post-extinction recovery ecosystems.The project will constitute method development and testing on simulated data to rigorously assess their capacity and increase their accuracy as well. The proposed project is divided into four discreet phases, each built onthe results of the previous one. Research will start with the analysis of biogeographic patterns in modern oceans, which will be followed by the analyses of the fossil record in individual time slices. The project will beconcluded with the outlining of quantitatively defined, traceable biogeographic units over the Phanerozoic. Success in the development of the proposed methodology will allow the analysis of the biogeographic structure in marinesettings based on a reproducible partitioning scheme.