Wolfgang Kießling
Prof. Dr. Wolfgang Kießling
-
Nutzung der Vergangenheit zur Vorhersage künftiger Veränderungen
(Third Party Funds Group – Sub project)
Overall project: Nutzung langfristiger Daten zur Planktonvielfalt zur Entwicklung eines Rahmens für die Bewertung und den Schutz der biologischen Vielfalt in Gebieten außerhalb der nationalen Gerichtsbarkeit
Term: 1. September 2024 - 31. August 2027
Funding source: BMBF / Verbundprojekt -
Drivers and consequences of novel marine ecological communities
(Third Party Funds Single)
Term: 1. January 2021 - 31. December 2023
Funding source: Ausländische Drittmittelgeber (keine EU-Mittel) -
TERSANE Coordination funds
(Third Party Funds Single)
Term: 1. December 2019 - 30. November 2022
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
URL: https://cnidaria.nat.uni-erlangen.de/wp/TERSANE is dedicated to elucidatingthe consequences of ancient, non-anthropogenic global change with the aim toproject the consequences of anthropogenic climate change on organisms andecosystems. Our overarching hypothesis is that the impact of climate-relatedstressors (CRS) that were associated with past marine biological crises mayserve as analogues for the future ocean. Success of the still ongoing initialphase of TERSANE and outstanding questions lead us to apply for a renewal:TERSANE 2.0. Our own previous work and independent new developments necessitateemphasizing in phase 2 of TERSANE: Spatialpatterns, biogeochemical cycles, mechanism-based understanding, and modeling.
TERSANE 2 will have nine projects, which are organizedin three tightly connected research pillars each comprising three projects
1. Identifying CRS across thePermian-Triassic boundary
Spatiotemporal patterns of CRSimpacts
3. Bridging spatiotemporal scales
Pillar 1 will use geochemical proxies and earth systemmodeling to reveal the exact environmental changes across the largesthyperthermal event and mass extinction of the Phanerozoic. Projects will targetnutrient and carbon cycles, continental weathering, and the intensity of causesof anoxia. Temperature, CO2 and pH have already been addressed inphase 1.
Pillar 2 explores the spatial pattern of CRS impactsin a time series context. Here paleobiological methods and modeling areapplied. Projects focus on temperature change as a trigger of range shifts andextinction. Each project will also emphasize patterns across thePermian-Triassic boundary linking to pillar 1.
Pillar 3 is dedicated to probing the role ofspatiotemporal scales on CRS impacts. We hypothesize that physiological dataprovide the mechanistic understanding for CRS responses on multiple timescales. Consequently, we link physiological experiments, body size dynamicsacross multiple time scales and organismic-ecosystem fates in this pillar.Projects in this pillar are tightly linked to both pillars 1 and 2.
-
Strengthening Paleontology: The German seed for global cooperation
(Third Party Funds Single)
Term: 1. October 2019 - 30. September 2026
Funding source: Volkswagen Stiftung -
CoralTrace – A new approach to understanding climate-induced reef crises
(Third Party Funds Group – Sub project)
Overall project: FOR 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE)
Term: 1. October 2019 - 30. September 2022
Funding source: DFG / Forschungsgruppe (FOR)Coral reefs are perhaps the most threatened marine ecosystems from current climate-related stressors (CRS). The modern reef crisis manifests itself in an increased frequency of mass-bleaching, reduced calcification rates of corals, and elevated coral mortalities. Although extinction risk is also high among reef-building corals, reef decline is driven by reduced net calcium carbonate production of existing species, rather than extirpation or extinction. Nevertheless, extinctions are a major concern, because these are irreversible and thus preventing the recovery of reefs from CRS-driven crises.Using the Paleobiology Database and the Erlangen PaleoReefs Database together with a new fossil trait database on extinct reef builders, this project aims to reveal the interplay of individualistic evolutionary fate and whole ecosystem changes in reefs over time. Specifically, we test three main hypotheses: (1) Reefs are more sensitive to CRS than reef building species. A global reef crisis can occur without mass extinction, simply because the net calcium carbonate production is reduced. An important implication of this hypothesis is that reef crisis may be an early warning sign of a forthcoming biodiversity crisis. (2) Both the reef-building capacity and the extinction risk of reef building taxa can be predicted from their traits. Although not all potentially relevant life-history traits can be derived from fossils (e.g., nature of photosymbionts), preservable traits such as growth morphology and habitat breadth have been shown to be correlated with coral extinction risk and reef growth today. (3) Mesophotic and mid-latitude environments are suitable environments for reefal refugia and recovery after climate induced crises.Hypothesis testing will be performed in a multivariate statistical framework and machine learning focussing on preserved reefal volume and extinction as dependent variables. Independent variables such as magnitude and duration of warming, anoxia and acidification will be taken from published sources and accompanying TERSANE projects. Tests will be conducted at the level of specific time slices (end-Permian, end-Triassic, early Jurassic) as well as in a time-series context. To be feasible and relevant to TERSANE’s goals, CoralTrace will focus on Permian to Neogene reef systems.
-
CoralTrace - Ein neuer Ansatz zum Verständnis klimainduzierter Riffkrisen
(Third Party Funds Single)
Term: 1. October 2019 - 30. September 2022
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Coral reefs are perhaps the most threatenedmarine ecosystems from current climate-related stressors (CRS). The modern reefcrisis manifests itself in an increased frequency of mass-bleaching, reducedcalcification rates of corals, and elevated coral mortalities. Althoughextinction risk is also high among reef-building corals, reef decline is drivenby reduced net calcium carbonate production of existing species, rather than extirpationor extinction. Nevertheless, extinctions are a major concern, because these areirreversible and thus preventing the recovery of reefs from CRS-driven crises.
Using the Paleobiology Database and theErlangen PaleoReefs Database together with a new fossil trait database onextinct reef builders, this project aims to reveal the interplay ofindividualistic evolutionary fate and whole ecosystem changes in reefs overtime. Specifically, we test three main hypotheses: (1) Reefs are more sensitiveto CRS than reef building species. A global reef crisis can occur without massextinction, simply because the net calcium carbonate production is reduced. Animportant implication of this hypothesis is that reef crisis may be an earlywarning sign of a forthcoming biodiversity crisis. (2) Both the reef-buildingcapacity and the extinction risk of reef building taxa can be predicted fromtheir traits. Although not all potentially relevant life-history traits can bederived from fossils (e.g., nature of photosymbionts), preservable traits suchas growth morphology and habitat breadth have been shown to be correlated withcoral extinction risk and reef growth today. (3) Mesophotic and mid-latitudeenvironments are suitable environments for reefal refugia and recovery afterclimate induced crises.
Hypothesistesting will be performed in a multivariate statistical framework and machinelearning focussing on preserved reefal volume and extinction as dependentvariables. Independent variables such as magnitude and duration of warming,anoxia and acidification will be taken from published sources and accompanyingTERSANE projects. Tests will be conducted at the level of specific time slices(end-Permian, end-Triassic, early Jurassic) as well as in a time-seriescontext. To be feasibleand relevant to TERSANE’s goals, CoralTrace will focus on Permian to Neogenereef systems.
-
Temperature-induced stresses as a unifying principle in ancient extinctions (TERSANE)
(Third Party Funds Group – Sub project)
Overall project: Temperature-induced stresses as a unifying principle in ancient extinctions (TISANE)
Term: 1. July 2016 - 31. July 2019
Funding source: Deutsche Forschungsgemeinschaft (DFG) -
Temperature-related stresses as a unifying principle in ancient extinctions
(Third Party Funds Group – Sub project)
Overall project: FOR 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE)
Term: 1. July 2016 - 30. June 2019
Funding source: DFG / Forschungsgruppe (FOR)
URL: https://www.gzn.fau.de/palaeoumwelt/projects/tersane/index.htmlCombined with local and regional anthropogenic factors, current human-induced climate warming is thought to be a major threat to biodiversity. The ecological imprint of climate change is already visible on land and in the oceans. The imprint is largely manifested in demographic/abundance changes and phenological and distribution shifts, whereas only local extinctions are yet attributable to climate change with some confidence. This is expected to change in the near future owing to direct heat stress, shortage of food, mismatches in the timing of seasonal activities, geographic barriers to migration, and new biological interactions. Additional stressors are associated with climate warming in marine systems, namely acidification and deoxygenation. Ocean acidification is caused by the ocean's absorption of CO2 and deoxygenation is a result of warmer water, increased ocean stratification and upwelling of hypoxic waters. The combination of warming, acidification and deoxygenation is known as the "deadly trio". Temperature is the most pervasive environmental factor shaping the functional characteristics and limits to life and is also central to the generation and biological effects of hypoxic waters and to modulating the effects of ocean acidification, with and without concomitant hypoxia. Due to the key role of temperature in the interaction of the three drivers we termed these temperature-related stressors (TRS).
-
Biotic consequences of temperature-related stresses across temporal scales
(Third Party Funds Group – Sub project)
Overall project: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE)
Term: since 1. January 2016
Funding source: DFG / Forschungsgruppe (FOR)Understanding the physiological constraints of extant species is of critical importance to interpret ancient responses to temperature-related stresses (TRS). Likewise, anticipating the biotic responses to current climate change will benefit from an analysis of biotic responses observed in the geological past. Embedded in the Research Unit TERSANE we propose a project, which explicitly combines neontological and paleontological approaches to assess the consequences of warming, ocean acidification, and various degrees of hypoxia for marine life. The project focuses on the compilation and analysis of large datasets and has three main components: (1) A meta-analysis of (a) extant organisms will summarize experimental and observational data on responses and critical limits of marine organisms to quantify the sensitivities of higher, fossilizable taxa to warming, ocean acidification, and hypoxia and their synergies, and (b) a meta-analysis of fossil observations will focus on assessing the veracity of the Lilliput effect, the reduction of body sizes in the aftermath of mass extinctions, which is sometimes thought to be related to TRS. (2) The analysis of primary occurrence data from the fossil record will evaluate the physiological and biogeographic selectivity of the end-Permian and Early Jurassic extinction events to test if the physiological principles derived from modern observations scale up to selective extinction risk in the face of extreme climate change. (3) The assessment of ancient rates of climate and environmental changes from local sections is critical to test if these rates were genuinely lower than over the last 50 years, or if the apparently lower rates observed in the past are just statistical artifacts due to the different time scales. A scaling-adjusted rate estimate will help making our findings relevant for modern climate change ecology. These three components will finally be integrated to evaluate the commonality of patterns and eco-physiological selectivity of extinctions as visible in paleo- and extant data.
-
FOR 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE)
(Third Party Funds Group – Overall project)
Term: since 1. January 2016
Funding source: DFG / Forschungsgruppe (FOR)Anthropogenic global warming is regarded as a major threat to species and ecosystems worldwide. Predicting the biological impacts of future warming is thus of critical importance. The geological record provides several examples of mass extinctions and global ecosystem pertubations in which temperature-related stresses are thought to have played a substantial role. These catastrophic natural events are potential analogues for the consequences of anthropogenic warming but the Earth system processes during these times are still unexplored, especially in terms of their ultimate trigger and the extinction mechanisms. The Research Unit TERSANE aims at assessing the relative importance of warming-related stresses in ancient mass extinctions and at evaluating how these stresses emerged under non-anthropogenic conditions. An interdisciplinary set of projects will combine high-resolution geological field studies with meta-analyses and sophisticated analysis of fossil occurrence data on ancient (suspect) hyperthermal events to reveal the rate and magnitude of warming, their potential causes, their impact on marine life, and the mechanisms which led to ecologic change and extinction. Geochemistry, analytical paleobiology and physiology comprise our main toolkit, supplemented by biostratigraphy, sedimentology, and modelling.
-
Exploring biodiversity evolution in tropical seas based on comparisons of the Triassic fauna of the Cassian Formation with modern faunas
(Third Party Funds Single)
Term: since 1. May 2015
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)The Triassic Cassian Formation yields an exceptionally diverse marine tropical invertebrate fauna offering a largely unbiased assessment of the complexity and biodiversity of early Mesozoic ecosystems. The fauna consist of various assemblages from different localities and paleoenvironments, which vary strongly in terms of diversity and composition. Fossil preservation is usually exceptional including primary aragonite and a rich fauna of small species. Based on standardized large-scale bulk-sampling, we want to assess the true within and between community biodiversity, ecological complexity, taxonomic structure, and size distribution of Triassic tropical shallow water assemblages. Comparisons with assemblages of Recent and Quaternary tropical settings will be used to assess biological changes in diversity and complexity over more than 200 million years of evolution. By comparison with modern samples and existing datasets representing diagenetically more strongly altered (`normal´) fossil assemblages, the effect of taphonomy on preserved diversity, size distribution and ecological structure can be tested. Many of the groups, which are highly diverse in recent tropical faunas (e.g., heterodont bivalves and neogastropods) radiated not before the Cretaceous. We aim at testing if similarly diverse and ecologically dominant clades were present in the Triassic or if diversity was more evenly spread among higher taxa. -
Biogeographic and community response of reef corals to Pleistocene interglacial warming
(Third Party Funds Single)
Term: since 1. September 2014
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH) -
Controls on global biodiversity patterns and skeletal mineralizsation during the Cambrian radiation
(Third Party Funds Group – Sub project)
Overall project: FOR 736: The Precambrian-Cambrian Biosphere Revolution: Insights from Chinese Microcontinents
Term: 1. March 2011 - 31. October 2014
Funding source: DFG / Forschungsgruppe (FOR)Dieses Projekt zielt darauf ab, die globale Diversitätsdynamik um die Ediacarium-Kambrium- Grenze zuverlässig zu dokumentieren und die Daten für rigoroses Testen von Hypothesen zu verwenden. Eigene Geländestudien in Kasachstan und Südchina werden durch Daten aus der Forschergruppe und publizierte Daten in der Paleobiology Database ergänzt, um einen möglichst repräsentativen Datensatz zu erhalten. Muster der Alpha-, Beta- und Gamma- Diversität werden untersucht, um die relative Rolle von Diversitätsänderungen innerhalb und zwischen Fossilgemeinschaften sowie die Bedeutung biogeographischer Muster zu verstehen. Diese Muster werden verwendet, um Hypothesen zur Ursache der kambrischen Radiation zu testen. Besonders der mögliche Zusammenhang zwischen evolutionärer Innovation auf der einen Seite und Lebensräumen auf der anderen Seite wird in dieser Hinsicht neue Erkenntnisse zur Rolle von Sauerstoff, Nährstoffen und Klimaveränderungen in der kambrischen Radiation liefern. Die Geländearbeit wird sich auf Riffstrukturen im untersten Kambrium und Makroinvertebraten konzentrieren, um Muster der Biomineralisation zu erfassen.
-
Evolutionary rates of zooxanthellate and azooxanthellate corals and their controlling factors
(Third Party Funds Single)
Term: since 1. February 2011
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Our goal is to identify the underlying causes of evolutionary rates within scleractinian corals. Scleractinians have two fundamentally different ecologies: Those that retrieve a substantial proportion of their nutrition from symbiotic algae in their tissue (zooxanthellate corals) and those that entirely depend on zooplankton for feeding Proposal Kiessling 2 (azooxanthellate corals). We will be analyzing the evolutionary consequences of these different ecological modes and correlated traits such as coloniality and environmental affinity. While photosymbiosis is clearly beneficial at the organismic level, there is a trade-off in terms of evolutionary benefit because zooxanthellate reef corals seem to be more sensitive to environmental change and tended to be affected more strongly by extinction events than other corals. Evolutionary rates are measured by a novel combination of samplingstandardized biodiversity dynamics and molecular methods. The changes in diversification, speciation, and extinction patterns will be compared with global changes in the marine environment and evolutionary changes in ecology to learn more about the circumstances favoring the spread and demise of these different corals. Thereby, we expect to improve estimates of extinction risk of modern corals.
Authored Books
- Yasuhara, M., Huang, H.H.M., Reuter, M., Tian, S.Y., Cybulski, J.D., O'Dea, A.,... Hong, Y. (2022). Hotspots of cenozoic tropical marine biodiversity. CRC Press.
Journal Articles
- Kießling, W., Dimitrijevic, D., Raja, N.B., Frühbeißer, K., Vescogni, A., & Bosellini, F.R. (2024). Census-based estimates of Mediterranean Oligocene–Miocene reef carbonate production. Facies, 71(2). https://doi.org/10.1007/s10347-024-00692-z
- Kießling, W., Reddin, C.J., Dowding, E., Dimitrijevic, D., Raja, N.B., & Kocsis, Á. (2024). Marine biological responses to abrupt climate change in deep time. Paleobiology. https://doi.org/10.1017/pab.2024.20
- Burger, M., Dimitrijevic, D., & Kießling, W. (2024). Bioerosion and encrustation in late triassic reef corals from Iran. Facies, 70(4). https://doi.org/10.1007/s10347-024-00687-w
- Dimitrijevic, D., Santodomingo, N., & Kießling, W. (2024). Reef refugia in the aftermath of past episodes of global warming. Coral Reefs, 43, 1431–1442. https://doi.org/10.1007/s00338-024-02548-y
- Dimitrijević, D., Santodomingo, N., & Kießling, W. (2024). Reef refugia in the aftermath of past episodes of global warming. Coral Reefs, 43, 1431–1442. https://doi.org/10.1007/s00338-024-02548-y
- Mathes, G., Reddin, C.J., Kießling, W., Antell, G., Saupe, E., & Steinbauer, M. (2024). Spatially Heterogeneous Responses of Planktonic Foraminiferal Assemblages Over 700,000 Years of Climate Change. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13905
- Eichenseer, K., Balthasar, U., Smart, C., & Kießling, W. (2024). Temperature Effects on the Distribution of Aragonitic and Calcite-Secreting Epifaunal Bivalves. Journal of Biogeography. https://doi.org/10.1111/jbi.15036
- Foster, W.J., Asatryan, G., Rauzi, S., Botting, J.P., Buchwald, S.Z., Lazarus, D.B.,... Kießling, W. (2023). Response of Siliceous Marine Organisms to the Permian-Triassic Climate Crisis Based on New Findings From Central Spitsbergen, Svalbard. Paleoceanography and Paleoclimatology, 38(12). https://doi.org/10.1029/2023PA004766
- Dimitrijevic, D., Raja Schoob, N.B., & Kießling, W. (2023). Corallite sizes of reef corals: decoupling of evolutionary and ecological trends. Paleobiology. https://doi.org/10.1017/pab.2023.28
- Reddin, C.J., Aberhan, M., Dimitrijević, D., Dowding, E., Kocsis, Á., Mathes, G.,... Kießling, W. (2023). Oversimplification risks too much: A response to 'How predictable are mass extinction events?'. Royal Society Open Science, 10(8). https://doi.org/10.1098/rsos.230400
- Raja, N.B., Pandolfi, J.M., & Kießling, W. (2023). Modularity explains large-scale reef booms in Earth’s history. Facies, 69(3). https://doi.org/10.1007/s10347-023-00671-w
- Pörtner, H.O., Scholes, R.J., Arneth, A., Barnes, D.K., Burrows, M.T., Diamond, S.E.,... Val, A.L. (2023). Overcoming the coupled climate and biodiversity crises and their societal impacts. Science, 380(6642), eabl4881-. https://doi.org/10.1126/science.abl4881
- Kießling, W., Smith, J., & Raja, N.B. (2023). Improving the relevance of paleontology to climate change policy. Proceedings of the National Academy of Sciences of the United States of America, 120(7), e2201926119. https://doi.org/10.1073/pnas.2201926119
- Smith, J., Rillo, M.C., Kocsis, Á., Dornelas, M., Fastovich, D., Huang, H.H.M.,... Hull, P.M. (2023). BioDeepTime: A database of biodiversity time series for modern and fossil assemblages. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13735
- Hodapp, D., Roca, I.T., Fiorentino, D., Garilao, C., Kaschner, K., Kesner-Reyes, K.,... Froese, R. (2023). Climate change disrupts core habitats of marine species. Global Change Biology. https://doi.org/10.1111/gcb.16612
- Na, L., Kocsis, Á., Li, Q., & Kießling, W. (2022). Coupling of geographic range and provincialism in Cambrian marine invertebrates. Paleobiology. https://doi.org/10.1017/pab.2022.36
- Siqueira, A.C., Kießling, W., & Bellwood, D.R. (2022). Fast-growing species shape the evolution of reef corals. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-30234-6
- Gliwa, J., Wiedenbeck, M., Schobben, M., Ullmann, C., Kießling, W., Ghaderi, A.,... Korn, D. (2022). Gradual warming prior to the end-Permian mass extinction. Palaeontology, 65(5). https://doi.org/10.1111/pala.12621
- Flannery-Sutherland, J.T., Raja, N.B., Kocsis, Á., & Kießling, W. (2022). fossilbrush: An R package for automated detection and resolution of anomalies in palaeontological occurrence data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13966
- Raja Schoob, N.B., Dimitrijevic, D., Krause, M.C., & Kießling, W. (2022). Ancient Reef Traits, a database of trait information for reef-building organisms over the Phanerozoic. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01486-0
- Mattern, F., Scharf, A., Pracejus, B., Al Shibli, I.S.A., Al Kabani, B.M.S., Al Qasmi, W.Y.A.,... Callegari, I. (2022). Origin of the Cretaceous olistostromes in the Oman mountains (Sultanate of Oman): Evidence from clay minerals. Journal of African Earth Sciences, 191. https://doi.org/10.1016/j.jafrearsci.2022.104547
- Staples, T.L., Kießling, W., & Pandolfi, J.M. (2022). Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts. Ecology Letters. https://doi.org/10.1111/ele.14016
- Mathes, G., Kießling, W., & Steinbauer, M.J. (2021). Deep-time climate legacies affect origination rates of marine genera. Proceedings of the National Academy of Sciences of the United States of America, 118(36). https://doi.org/10.1073/pnas.2105769118
- Kocsis, Á., Reddin, C.J., Scotese, C.R., Valdes, P.J., & Kießling, W. (2021). Increase in marine provinciality over the last 250 million years governed more by climate change than plate tectonics. Proceedings of the Royal Society of London, Series B: Biological Sciences, 288(1957). https://doi.org/10.1098/rspb.2021.1342
- Raja, N.B., Lauchstedt, A., Pandolfi, J.M., Kim, S.W., Budd, A.F., & Kießling, W. (2021). Morphological traits of reef corals predict extinction risk but not conservation status. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13321
- Raja, N.B., & Kießling, W. (2021). Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proceedings of the Royal Society of London, Series B: Biological Sciences, 288. https://doi.org/10.1098/rspb.2021.0545
- Mathes, G., van Dijk, J., Kießling, W., & Steinbauer, M.J. (2021). Extinction risk controlled by interaction of long-term and short-term climate change. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-020-01377-w
- Manes, S., Costello, M.J., Beckett, H., Debnath, A., Devenish-Nelson, E., Grey, K.A.,... Vale, M.M. (2021). Endemism increases species' climate change risk in areas of global biodiversity importance. Biological Conservation. https://doi.org/10.1016/j.biocon.2021.109070
- Teichert, S., Steinbauer, M., & Kießling, W. (2020). A possible link between coral reef success, crustose coralline algae and the evolution of herbivory. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-73900-9
- Pandolfi, J.M., Staples, T.L., & Kießling, W. (2020). Increased extinction in the emergence of novel ecological communities. Science, 370(6513), 220-222. https://doi.org/10.1126/science.abb3996
- Chen, W., Wang, Y., Huang, Y., Wang, T., Yi, Z., & Kießling, W. (2020). Reef-building red algae from an uppermost Permian reef complex as a fossil analogue of modern coralline algal ridges. Facies, 66(4). https://doi.org/10.1007/s10347-020-00606-9
- Reddin, C.J., Kocsis, Á., & Kießling, W. (2020). Corrigendum to: Marine invertebrate migrations trace climate change over 450 million years (Global Ecology and Biogeography, (2018), 27, 6, (704-713), 10.1111/geb.12732). Global Ecology and Biogeography, 29(7), 1280-1282. https://doi.org/10.1111/geb.13114
- Yasuhara, M., Wei, C.L., Kucera, M., Costello, M.J., Tittensor, D.P., Kießling, W.,... Kubota, Y. (2020). Past and future decline of tropical pelagic biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 12891-12896. https://doi.org/10.1073/pnas.1916923117
- Roden, V., Zuschin, M., Nuetzel, A., Hausmann, I.M., & Kießling, W. (2020). Drivers of beta diversity in modern and ancient reef-associated soft-bottom environments. PeerJ, 8. https://doi.org/10.7717/peerj.9139
- Antell, G.S., Kießling, W., Aberhan, M., & Saupe, E.E. (2020). Marine Biodiversity and Geographic Distributions Are Independent on Large Scales. Current Biology, 30(1), 115-121.e5. https://doi.org/10.1016/j.cub.2019.10.065
- Frisone, V., Preto, N., Pisera, A., Agnini, C., Giusberti, L., Papazzoni, C.A.,... Bosellini, F.R. (2020). A first glimpse on the taphonomy and sedimentary environment of the Eocene siliceous sponges from Chiampo, Lessini Mts, NE Italy. Bollettino Della Societa Paleontologica Italiana, 59(3), 299-313. https://doi.org/10.4435/BSPI.2020.25
- Reddin, C.J., Nätscher, P., Kocsis, Á., Pörtner, H.O., & Kießling, W. (2020). Marine clade sensitivities to climate change conform across timescales. Nature Climate Change. https://doi.org/10.1038/s41558-020-0690-7
- Bosellini, F.R., Vescogni, A., Kießling, W., Zoboli, A., Di Giuseppe, D., & Papazzoni, C.A. (2020). Revisiting reef models in the Oligocene of northern Italy (Venetian Southern Alps). Bollettino Della Societa Paleontologica Italiana, 59(3), 337-348. https://doi.org/10.4435/BSPI.2020.12
- Reddin, C.J., Kocsis, Á., Aberhan, M., & Kießling, W. (2020). Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. Global Change Biology. https://doi.org/10.1111/gcb.15434
- Kießling, W., Raja, N.B., Roden, V., Turvey, S.T., & Saupe, E.E. (2019). Addressing priority questions of conservation science with palaeontological data. Philosophical Transactions of the Royal Society B-Biological Sciences, 374, 20190222. https://doi.org/10.1098/rstb.2019.0222
- Roden, V., Hausmann, I.M., Nützel, A., Seuß, B., Reich, M., Urlichs, M.,... Kießling, W. (2019). Fossil liberation: a model to explain high biodiversity in the Triassic Cassian Formation. Palaeontology. https://doi.org/10.1111/pala.12441
- Eichenseer, K., Balthasar, U., Smart, C.W., Stander, J., Haaga, K.A., & Kießling, W. (2019). Jurassic shift from abiotic to biotic control on marine ecological success. Nature Geoscience. https://doi.org/10.1038/s41561-019-0392-9
- Kocsis, Á., Reddin, C.J., Alroy, J., & Kießling, W. (2019). The r package divDyn for quantifying diversity dynamics using fossil sampling data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13161
- Reddin, C.J., Kocsis, Á., & Kießling, W. (2018). Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology, 1–15. https://doi.org/10.1017/pab.2018.34
- Reddin, C.J., Kocsis, Á., & Kießling, W. (2018). Marine invertebrate migrations trace climate change over 450 million years. Global Ecology and Biogeography, 27(6), 704-713. https://doi.org/10.1111/geb.12732
- Kocsis, Á., Reddin, C.J., & Kießling, W. (2018). The biogeographical imprint of mass extinctions. Proceedings of the Royal Society of London, Series B: Biological Sciences, 285(1878). https://doi.org/10.1098/rspb.2018.0232
- Kießling, W., Schobben, M., Ghaderi, A., Hairapetian, V., Leda, L., & Korn, D. (2018). Pre-mass extinction decline of latest Permian ammonoids. Geology, 46(3), 283-286. https://doi.org/10.1130/G39866.1
- Petersen, M., Glöckler, F., Kießling, W., Döring, M., Fichtmüller, D., Laphakorn, L.,... Hoffmann, J. (2018). History and development of ABCDEFG: a data standard for geosciences. FOSSIL RECORD, 21(1), 47-53. https://doi.org/10.5194/fr-21-47-2018
- Vulpius, S., & Kießling, W. (2018). New constraints on the last aragonite-calcite sea transition from early Jurassic ooids. Facies, 64(1). https://doi.org/10.1007/s10347-017-0516-x
- Roden, V., Kocsis, Á., Zuschin, M., & Kießling, W. (2018). Reliable estimates of beta diversity with incomplete sampling. Ecology, 99(5), 1051-1062. https://doi.org/10.1002/ecy.2201
- Kocsis, Á., Reddin, C.J., & Kießling, W. (2018). The stability of coastal benthic biogeography over the last 10 million years. Global Ecology and Biogeography, 27(9), 1106-1120-1120. https://doi.org/10.1111/geb.12771
- Lauchstedt, A., Pandolfi, J., & Kießling, W. (2017). Towards a new paleotemperature proxy from reef coral occurrences. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-10961-3
- Li, Q., Li, Y., & Kießling, W. (2017). The oldest labechiid stromatoporoids from intraskeletal crypts in lithistid sponge Calathium reefs. Lethaia, 50(1), 140-148. https://doi.org/10.1111/let.12182
- Kießling, W., & Kocsis, Á. (2016). Adding fossil occupancy trajectories to the assessment of modern extinction risk. Biological Letters, 12(10). https://doi.org/10.1098/rsbl.2015.0813
- Renema, W., Pandolfi, J., & Kießling, W. (2016). Are coral reefs victims of their own past success? Science Advances, 2(4). https://doi.org/10.1126/sciadv.1500850
- Zhang, Y., Li, Q., Li, Y., Kießling, W., & Wang, J. (2016). Cambrian to Lower Ordovician reefs on the Yangtze Platform, South China Block, and their controlling factors. Facies, 62, No 17 (18 pages). https://doi.org/10.1007/s10347-016-0466-8
- Molinos, J.G., Halpern, B.S., Schoeman, D.S., Brown, C.D., Kießling, W., Moore, P.J.,... Burrows, M.T. (2016). Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change, 6, doi:10.1038/nclimate2769. https://doi.org/10.1038/nclimate2769
- Vandenbroucke, T.R., Emsbo, P., Munnecke, A., Nuns, N., Duponchel, L., Lepot, K.,... Kießling, W. (2015). Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction. Nature Communications, 6. https://doi.org/10.1038/ncomms8966
- Li, Q., Li, Y., & Kießling, W. (2015). Allogenic succession in Late Ordovician reefs from southeast China: a response to the Cathaysian orogeny. Estonian Journal of Earth Sciences, 64(1), 68-73. https://doi.org/10.3176/earth.2015.12
- Kießling, W., & Kocsis, Á. (2015). Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiology, 41(3), 402-414. https://doi.org/10.1017/pab.2015.6
- Rillig, M.C., Kießling, W., Borsch, T., Gessler, A., Greenwood, A.D., Hofer, H.,... Jeltsch, F. (2015). Biodiversity research: data without theory – theory without data. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2015.00020
- Bibi, F., & Kießling, W. (2015). Continuous evolutionary change in Plio-Pleistocene mammals of eastern Africa. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10623-10628. https://doi.org/10.1073/pnas.1504538112
- Na, L., & Kießling, W. (2015). Diversity partitioning during the Cambrian radiation. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4702-4706. https://doi.org/10.1073/pnas.1424985112
- Kießling, W., Li, Q., Li, Y., & Wang, J. (2015). Early Ordovician lithistid sponge-Calathium reefs on the Yangtze Platform and their paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 425, 84-96. https://doi.org/10.1016/j.palaeo.2015.02.034
- Kießling, W. (2015). Fuzzy seas. Geology, 43(2), 191-192. https://doi.org/10.1130/focus022015.1
- Kießling, W., Kemp, D.B., & Eichenseer, K. (2015). Maximum rates of climate change are systematically underestimated in the geological record. Nature Communications, 6(No. 8890), (6 Seiten). https://doi.org/10.1038/ncomms9890
- Kießling, W., Aberhan, M., & Kiessling, W. (2015). Persistent ecological shifts in marine molluscan assemblages across the end-Cretaceous mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 112(23), 7207-7212. https://doi.org/10.1073/pnas.1422248112
- O'Connor, M., Holding, J., Kappel, C., Duarte, C.M., Brander, K., Brown, C.J.,... Richardson, A.J. (2015). Strengthening confidence in climate change impact science. Global Ecology and Biogeography, 24(1), 64-76. https://doi.org/10.1111/geb.12218
- Li, Q., Li, Y., & Kießling, W. (2015). The first sphinctozoan-bearing reef from an Ordovician back-arc basin. Facies, 61(17), 9pp.. https://doi.org/10.1007/s10347-015-0444-6
- Hopkins, M., Simpson, C., & Kießling, W. (2014). Differential niche dynamics among major marine invertebrate clades. Ecology Letters, 17(3), 314-323. https://doi.org/10.1111/ele.12232
- Li, Q., Lin, Y., & Kießling, W. (2014). Early Ordovician sponge-Calathium-microbial reefs on the Yangtze Platform margin of the South China Block. Gff, 136(1), 157-161. https://doi.org/10.1080/11035897.2013.862852
- Pandolfi, J., & Kießling, W. (2014). Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Current Opinion in Environmental Sustainability, 7, 52-58. https://doi.org/10.1016/j.cosust.2013.11.020
- Burrows, M.T., Schoeman, D.S., Richardson, A.J., Molinos, J.G., Hoffmann, A., Buckley, L.B.,... Poloczanska, E.S. (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492-495. https://doi.org/10.1038/nature12976
- Kocsis, Á., Kießling, W., & Palfy, J. (2014). Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate causes of the end-Triassic mass extinction. Paleobiology, 40(4), 625--639. https://doi.org/10.1666/14007
- Kocsis, A.T., Kießling, W., & Palfy, J. (2014). Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate causes of the end-Triassic mass extinction. Paleobiology, 40(4), 625-639. https://doi.org/10.1666/14007
- Aberhan, M., & Kießling, W. (2014). Rebuilding biodiversity of Patagonian marine molluscs after the end-Cretaceous mass extinction. PLoS ONE, 9(7), e102629. https://doi.org/10.1371/journal.pone.0102629
- Mewis, H., & Kießling, W. (2013). Environmentally controlled succession in a late Pleistocene coral reef (Sinai, Egypt). Coral Reefs, 32, 49-58. https://doi.org/10.1007/s00338-012-0968-y
- Kießling, W., Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S.,... Richardson, A.J. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3, 919-925. https://doi.org/10.1038/nclimate1958
- Tietje, M., & Kießling, W. (2013). Predicting extinction from fossil trajectories of geographical ranges in benthic marine molluscs. Journal of Biogeography, 40, 790-799. https://doi.org/10.1111/jbi.12030
- Mcgowan, A.J., & Kießling, W. (2013). Using abundance data to assess the relative role of sampling biases and evolutionary radiations in Upper Muschelkalk ammonoids. Acta Palaeontologica Polonica, 58(3), 561-572. https://doi.org/10.4202/app.2010.0040
- Richardson, A.J., Brown, C.D., Brander, K., Bruno, J.F., Buckley, L., Burrows, M.T.,... Poloczanska, E.S. (2012). Climate change and marine life. Biology Letters. https://doi.org/10.1098/rsbl.2012.0530
- Kießling, W., Simpson, C., Beck, B., Mewis, H., & Pandolfi, J.M. (2012). Equatorial decline of reef corals during the last Pleistocene interglacial. Proceedings of the National Academy of Sciences of the United States of America, 109(52), 21378-21383. https://doi.org/10.1073/pnas.1214037110
- Scasso, R.A., Aberhan, M., Ruiz, L., Weidemeyer, S., Medina, F.A., & Kießling, W. (2012). Integrated bio- and lithofacies analysis of coarse-grained, tide-dominated deltaic environments across the Cretaceous/Paleogene boundary in Patagonia, Argentina. Cretaceous Research, 36, 37-56. https://doi.org/10.1016/j.cretres.2012.02.002
- Königshof, P., Suttner, T.J., & Kießling, W. (2012). Klimawandel und Veränderung der Biodiversität in der Erdgeschichte. Natur, Forschung, Museum.
- Nakrem, H.A., & Kießling, W. (2012). Late Jurassic (Volgian) radiolarians from Central Spitsbergen - A preliminary study. Norwegian Journal of Geology, 92, 149-155.
- Hoenisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A.,... Williams, B. (2012). The geological record of ocean acidification. Science, 335, 1058-1063. https://doi.org/10.1126/science.1208277
- Aberhan, M., Nuernberg, S., & Kießling, W. (2012). Vision and the diversification of Phanerozoic marine invertebrates. Paleobiology, 38(2), 187-204. https://doi.org/10.1666/10066.1
- Kießling, W. (2011). Patterns and processes of ancient reef crises. The Paleontological Society Papers, 17, 1-14.
- Simpson, C., Kießling, W., Mewis, H., Baron-Szabo, R., & Müller, J. (2011). Evolutionary diversification of reef corals: a comparison of the molecular and fossil records. Evolution, 65(11), 3274-3284. https://doi.org/10.1111/j.1558-5646.2011.01365.x
- Kießling, W., Pandey, D., Schemm-Gregory, M., Mewis, H., & Aberhan, M. (2011). Marine benthic invertebrates from the Upper Jurassic of northern Ethiopia and their biogeographic affinities. Journal of African Earth Sciences, 59, 195-214. https://doi.org/10.1016/j.jafrearsci.2010.10.006
- Kießling, W., & Simpson, C. (2011). On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 17(1), 56-67. https://doi.org/10.1111/j.1365-2486.2010.02204.x
- Burrows, M.T., Schoeman, D.S., Buckley, L.B., Moore, P., Poloczanska, E.S., Brander, K.M.,... Richardson, A.J. (2011). The pace of shifting climate in marine and terrestrial ecosystems. Science, 334, 652-655. https://doi.org/10.1126/science.1210288
- Kießling, W., & Danelian, T. (2011). Trajectories of Late Permian Jurassic radiolarian extinction rates: no evidence for an end-Triassic mass extinction. Fossil Record, 14(1), 95-101. https://doi.org/10.1002/mmng.201000017
- Kießling, W. (2010). Evolutionszentrum Korallenriff. GIT Labor-Fachzeitschrift.
- Kießling, W., & Nützel, A. (2010). German paleontology in the early 21st century. Palaeontologia Electronica.
- Kießling, W. (2010). Promoting origination. Nature Geoscience, 3, 388-389.
- Kießling, W. (2010). Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 11-19. https://doi.org/10.1016/j.palaeo.2009.03.020
- Kießling, W., Simpson, C., & Foote, M. (2010). Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science, 327, 196-198. https://doi.org/10.1126/science.1182241
- Kießling, W. (2010). Response. Science, 328(5981), 975-976. https://doi.org/10.1126/science.328.5981.975
- Kießling, W. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327(5970), 1214-1218. https://doi.org/10.1126/science.1177265
- Kießling, W. (2010). The Devonian Nekton Revolution. Lethaia, 43, 465-477. https://doi.org/10.1111/j.1502-3931.2009.00206.x
- Simpson, C., & Kießling, W. (2010). The role of extinction in large-scale diversity-stability relationships. Proceedings of the Royal Society of London, Series B: Biological Sciences, 277, 1451-1456. https://doi.org/10.1098/rspb.2009.2062
- Kießling, W., Roniewicz, E., Villier, L., Léonide, P., & Struck, U. (2009). An early Hettangian coral reef in southern France: Implications for the end-Triassic reef crisis. Palaios, 24, 657-671. https://doi.org/10.2110/palo.2009.p09-030r
- Kießling, W. (2009). Diversification trajectories and evolutionary life-history traits in early sharks and batoids. Proceedings of the Royal Society of London, Series B: Biological Sciences, 276, 945-951. https://doi.org/10.1098/rspb.2008.1441
- Kießling, W. (2009). First record of coralline demosponges in the Pleistocene: implications for reef ecology. Coral Reefs, 28(4), 867-870. https://doi.org/10.1007/s00338-009-0549-x
- Kießling, W. (2009). Geologic and biologic controls on the evolution of reefs. Annual Review of Ecology Evolution and Systematics, 40, 173-192. https://doi.org/10.1146/annurev.ecolsys.110308.120251
- Kießling, W. (2009). Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiology, 35(4), 612-630. https://doi.org/10.1666/0094-8373-35.4.612
- Bucur, I.I., Kießling, W., & Scasso, R.A. (2009). Re-description and neotypification of Archamphiroa jurassica Steinmann 1930, a calcareous red alga from the Jurassic of Argentina. Journal of Paleontology, 83(6), 962-968.
- Kießling, W. (2008). Phanerozoic trends in skeletal mineralogy driven by mass extinctions. Nature Geoscience, 1(8), 527-530. https://doi.org/10.1038/ngeo251
- Alroy, J., Aberhan, M., Fürsich, F., Bottjer, D., Foote, M., Harries, P.,... Kießling, W. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science, 321, 97-100. https://doi.org/10.1126/science.1156963
- Kießling, W. (2008). Sampling-standardized expansion and collapse of reef building in the Phanerozoic. Fossil Record, 11(1), 7-18.
- Kießling, W. (2007). Entwicklung der marinen Biodiversität. Humboldt-Spektrum.
- Kießling, W., & Aberhan, M. (2007). Environmental determinants of marine benthic biodiversity dynamics through Triassic-Jurassic times. Paleobiology, 33(3), 414-434. https://doi.org/10.1666/06069.1
- Kießling, W., Aberhan, M., Brenneis, B., & Wagner, P. (2007). Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1-4), 201-222. https://doi.org/10.1016/j.palaeo.2006.06.029
- Kießling, W. (2007). Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous/Paleogene boundary sections. Geology, 35(3), 227-230. https://doi.org/10.1130/G23197A.1
- Kießling, W. (2007). Geographical distribution and extinction risk: Lessons from Triassic-Jurassic marine benthic organisms. Journal of Biogeography, 34(9), 14731489. https://doi.org/10.1111/j.1365-2699.2007.01709.x
- Wagner, P., Aberhan, M., Hendy, A., & Kießling, W. (2007). The effects of taxonomic standardization on occurrence-based estimates of diversity. Proceedings of the Royal Society of London, Series B: Biological Sciences, 274, 439-444.
- Kießling, W., Scasso, R.A., Aberhan, M., Ruiz, L., & Weidemeyer, S. (2006). A Maastrichtian microbial reef and associated limestones in the Roca Formation of Patagonia. Fossil Record, 9(2), 183-197. https://doi.org/10.1002/mmng.200600007
- Kowalewski, M., Kießling, W., Aberhan, M., Fürsich, F., Scarponi, D., Barbour, S.L., & Hoffmeister, A.P. (2006). Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology, 32, 533-561. https://doi.org/10.1666/05074.1
- Kießling, W. (2006). Life's complexity cast in stone. Science, 314, 1254-1255.
- Kießling, W. (2006). Response to comments on "Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science, 314, 925.
- Kießling, W. (2006). Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science, 312, 897-900. https://doi.org/10.1126/science.1123591
- Aberhan, M., Kießling, W., & Fürsich, F. (2006). Testing the role of biological interactions for the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology, 32, 259-277. https://doi.org/10.1666/05028.1
- Kießling, W. (2006). Towards an unbiased estimate of fluctuations in reef abundance and volume during the Phanerozoic. Biogeosciences, 3, 15-27.
- Scasso, R.A., Concheyro, A., Kießling, W., Aberhan, M., Hecht, L., Medina, F.A., & Tagle, R. (2005). A tsunami deposit at the Cretaceous-Tertiary boundary in Argentina. Cretaceous Research, 26(2), 283-297. https://doi.org/10.1016/j.cretres.2004.12.003
- Kießling, W. (2005). Habitat effects and sampling bias on Phanerozoic reef distribution. Facies, 51, 27-35. https://doi.org/10.1007/s10347-004-0044-3
- Kießling, W. (2005). Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature, 433, 410-413. https://doi.org/10.1038/nature03152
- Kießling, W. (2005). Massive corals in Paleocene siliciclastic sediments of Chubut (Patagonia, Argentina). Facies, 51, 233-241.
- Kießling, W. (2004). Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014(3), 195-223. https://doi.org/10.1016/j.palaeo.2004.05.025
- Arratia, G., Scasso, R.A., & Kießling, W. (2004). Late Jurassic fishes from Longing Gap, Antarctic Peninsula. Journal of Vertebrate Paleontology, 24(1), 41-55.
- Kießling, W., Lazarus, D., & Zeller, U. (2004). Mesozoic–Cenozoic bioevents. Palaeogeography, Palaeoclimatology, Palaeoecology.
- Kießling, W. (2003). Patterns of Phanerozoic carbonate platform sedimentation. Lethaia, 36(3), 195-225. https://doi.org/10.1080/00241160310004648
- Kießling, W. (2003). The Permian-Triassic boundary interval as a model for forcing marine ecosystem collapse by long-term atmospheric oxygen drop. Geology, 31(11), 961-964. https://doi.org/10.1130/G19891.1
- Kießling, W. (2002). Radiolarian diversity patterns in the latest Jurassic-earliest Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 187(1-2), 179-206. https://doi.org/10.1016/S0031-0182(02)00529-1
- Kießling, W. (2002). Radiolarian faunal characteristics in Oligocene sediments of the Kerguelen Plateau, Leg 183, Site 1138. Proceedings of the Ocean Drilling Program: Scientific Results, 183, 48pp..
- Kießling, W. (2002). Sectioning of radiolarians under continuous observation. Fossil Record, 5, 43-48.
- Kießling, W. (2001). Diagenesis of Upper Jurassic concretions from the Antarctic Peninsula. Journal of Sedimentary Research, 71(1), 88-100.
- Kießling, W. (2001). Geographie des Todes. Theatrum naturae, 1, 4-6.
- Kießling, W. (2001). Paleoclimatic significance of Phanerozoic reefs. Geology, 29, 751-754.
- Kießling, W. (2000). Late Paleozoic and Late Triassic limestones from North Palawan Block (Philippines): Microfacies and paleogeographical implications. Facies, 43, 39-78.
- Kießling, W., Scasso, R.A., Zeiss, A., Riccardi, A., & Medina, F.A. (1999). Combined radiolarian-ammonite stratigraphy for the Late Jurassic of the Antarctic Peninsula: Implications for radiolarian stratigraphy. Geodiversitas, 21(4), 687-713.
- Kießling, W. (1999). Late Jurassic radiolarians from the Antarctic Peninsula. Micropaleontology, 45(supl. 1), 1-96.
- Kießling, W. (1999). Paleoreef Maps: Evaluation of a comprehensive database of Phanerozoic reefs. Aapg Bulletin, 84, 1552-1587.
- Kießling, W. (1996). Facies characterization of Mid-Mesozoic deep-water sediments by quantitative analysis of siliceous microfaunas. Facies, 35, 237-274.
- Kießling, W. (1995). New radiolarians from the earliest Cretaceous of the Sultanate of Oman (Wahrah Formation, Jebel Buwaydah). Palaeontologische Zeitschrift, 69, 321-342. https://doi.org/10.1007/BF02987798
- Kießling, W. (1992). Palaeontological and facial features of the Upper Jurassic Hochstegen Marble (Tauern Window, Eastern Alps). Terra Nova, 4(2), 184-197. https://doi.org/10.1111/j.1365-3121.1992.tb00471.x
Book Contributions
- Cooley, S., Schoeman, D., Bopp, L., Boyd, P., Donner, S., Ghebrehiwet, D.Y.,... Skern-Mauritzen, M. (2022). Ocean and Coastal Ecosystems and their Services, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the IPCC Sixth Assessment Report. In IPCC WGII Sixth Assessment Report (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the IPCC Sixth Assessment Report..
- Aberhan, M., & Kießling, W. (2012). Phanerozoic marine biodiversity: a fresh look at data, methods, patterns and processes. Global biodiversity, extinction intervals and biogeographic perturbations through time. In Talent, J.A. (Eds.), Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time. (pp. 3-22). Berlin: Springer.
- Kießling, W., & Heiss, G.A. (2011). Coral Reefs. In A. Djoghlaf and F. Dodds (Eds.), Biodiversity and Ecosystem Insecurity: A planet in peril. Earthscan.
- Simpson, C., & Kießling, W. (2010). Diversity of Life through Time. In Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons.
- Kießling, W. (2010). Krisen als Chance: Lernen aus der Evolution. In K.-S. Otto and T. Speck (Eds.), Darwin meets Business. Gabler.
- Perrin, C., & Kießling, W. (2010). Latitudinal trends in Cenozoic reef patterns and their relationship to climate. Carbonate Systems during the Oligocene-Miocene climatic transition. In IAS Special Publications. (pp. 17-34).
- Kießling, W. (2008). Auf und Nieder - die wechselvolle Entwicklungsgeschichte von Riffen in der Tiefenzeit. In R. Leinfelder, G. Heiß and U. Moldrzyk (Eds.), Abgetaucht. Konradin Verlag.
- Kießling, W. (2007). Aufbruch und Untergang: Vom Werden und Vergehen des Lebens. In M. Glaubrecht, A. Kinitz and U. Moldrzyk (Eds.), Als das Leben laufen lernte. Prestel.
- Kenkmann, T., & Kießling, W. (2007). Wechselspiel der Sphären: Fein verzahnte Kreisläufe steuern das System Erde. In M. Glaubrecht, A. Kinitz and U. Moldrzyk (Eds.), Als das Leben laufen lernte. Prestel.
- Kießling, W. (2003). Reefs. In Encyclopedia of Sediments and Sedimentary Rocks. (pp. 557-560). Dordrecht: Kluwer Academic.
- Kießling, W. (2003). Riffdiversität in der Erdgeschichte - Fossilbericht und Interpretationen. In Gradstein, S. R., Willmann, R. & Zizka, G. (Eds.), Biodiversitätsforschung - Die Entschlüsselung der Artenvielfalt in Raum und Zeit. Schweizerbart.
- Flügel, E., & Kießling, W. (2002). A new look at ancient reefs. In Phanerozoic reef patterns. (pp. 3-20). Tulsa: -.
- Kießling, W. (2002). Distribution of Chicxulub ejecta at the KT boundary. Catastrophic Events and Mass Extinctions. In GSA Special Paper. (pp. 55-68).
- Kießling, W. (2002). Earliest Cretaceous high latitude reefs in Tres Lagunas (Chubut Province, Argentina). In Actas del XV Congreso Geológico Argentino. (pp. 754-759).
- Kießling, W., Flügel, E., & Golonka, J. (2002). From patterns to processes: The future of reef research. In Phanerozoic reef patterns. (pp. 735-744). Tulsa: -.
- Kießling, W. (2002). PaleoReef - a database on Phanerozoic reefs. In SEPM Special Publication. (pp. 77-94).
- Flügel, E., & Kießling, W. (2002). Patterns of Phanerozoic reef crises. In Phanerozoic reef patterns. (pp. 691-734). Tulsa: -.
- Golonka, J., & Kießling, W. (2002). Phanerozoic time scale and definition of time slices. In Phanerozoic Reef Patterns. (pp. 11-20). Tulsa: SEPM.
- Kießling, W. (2002). Secular variations in the Phanerozoic reef ecosystem. In Phanerozoic Reef Patterns. (pp. 625-690). Tulsa: SEPM.
- Kießling, W., & Claeys, P. (2001). A geographic database approach to the KT boundary. In Geological and biological effects of impact events. (pp. 83-140). Berlin: Springer.
- Kießling, W. (2001). Phanerozoic reef trends based on the Paleoreefs database. In The History and Sedimentology of Ancient Reef Systems. (pp. 41-88). NewYork: Plenum Press.
- Kießling, W., Flügel, E., & Golonka, J. (2000). Fluctuations in the carbonate production of Phanerozoic reefs. In Carbonate platform systems: components and interactions. (pp. 191-215). London: Geological Society Publishing House.
Edited Volumes
- Kießling, W., Flügel, E., & Golonka, J. (Eds.) (2002). Phanerozoic Reef Patterns. Tulsa: Society for Sedimentary Geology (SEPM).
Conference Contributions
- Dimitrijevic, D., Raja Schoob, N.B., & Kießling, W. (2021). Changes in corallite sizes of scleractinian corals across major hyperthermal events. In Proceedings of the Progressive Palaeontology 2021 - Online. University College London (UCL) - Online.
- Dimitrijevic, D., Raja Schoob, N.B., & Kießling, W. (2021). Coral community shifts across major reef crises. In Proceedings of the ICRS 2021, 14th International Coral Reef Symposium. Bremen Virtual.
- Dimitrijevic, D., Raja, N.B., & Kießling, W. (2020). Corallite sizes and their link to extinction risk of scleractinian corals across the Triassic-Jurassic boundary. Paper presentation at GSA 2020 Connects Online, Online, US.
- Raja, N.B., Lauchstedt, A., Pandolfi, J.M., Kim, S.W., Budd, A.F., & Kießling, W. (2020). Mismatches of threat status and actual extinctions in Quaternary reef corals. In Proceedings of the GSA 2020 Connects Online.
- Eichenseer, K., Balthasar, U., Smart, C.W., Stander, J., Haaga, K.A., & Kießling, W. (2019, December). Aragonite calcite sea effects on calcifying organisms and reefs. Paper presentation at Annual Meeting of the Palaeontological Association, Valencia, ES.
- Roden, V., Hausmann, I.M., & Kießling, W. (2019). Drivers of beta diversity in Triassic reefs and reef basins. In Proceedings of the Annual Conference of the Paläontologische Gesellschaft. Munich.
- Roden, V., Hausmann, I.M., Nützel, A., Seuß, B., Reich, M., Urlichs, M.,... Kießling, W. (2019, June). The role of liberation lagerstätten as windows into past biodiversity. Paper presentation at 11th North American Paleontological Convention, Riverside, CA, US.
- Teichert, S., Steinbauer, M., & Kießling, W. (2019). Facilitation of coral reef growth by coralline red algae – patterns during the last 150 million years. Paper presentation at macro 2019 – Bridging local patterns and global challenges, Würzburg, DE.
- Raja, N.B., & Kießling, W. (2019). Origination and dispersal dynamics of Cenozoic marine plankton. Paper presentation at Annual Meeting of the Paleontological Society (Paläontologische Gesellschaft) 2019, Munich, DE.
- Raja Schoob, N.B., & Kießling, W. (2019). Revisiting the long-term biodiversity dynamics of reef builders in a novel Bayesian framework. Paper presentation at 13th International Symposium on Fossil Cnidaria, Modena, IT.
- Seuß, B., Roden, V., Kocsis, Á., & Kießling, W. (2019). The Late Paleozoic Ice Age (LPIA) – Turnover rates during a phase of major climatic changes. In Proceedings of the Jahrestagung der Paläontologischen Gesellschaft in München. München.
- Seuß, B., Roden, V., Kocsis, Á., & Kießling, W. (2019). Turnover rates of Paleozoic and modern taxa during the Late Paleozoic Ice Age. In Proceedings of the GSA Annual Meeting. Phoenix, US.
- Eichenseer, K., Balthasar, U., Smart, C.W., Stander, J., & Kießling, W. (2018). A transition from Court Jester to Red Queen in the ecological success of Phanerozoic marine calcifiers. Paper presentation.
- Roden, V., Hausmann, I.M., Zuschin, M., & Kießling, W. (2018). Beta diversity in Triassic and modern marine communities. In Proceedings of the 5th International Palaeontological Congress (pp. 1014). Paris.
- Roden, V., & Kießling, W. (2018). High beta diversity in a Triassic reef basin assemblage. In School of Earth & Environment, University of Leeds (Eds.), Proceedings of the Crossing the Palaeontological- Ecological Gap (pp. 19). Leeds.
- Roden, V., Hausmann, I.M., Seuß, B., Nützel, A., & Kießling, W. (2018). High diversity in the Triassic Cassian Formation. Paper presentation at GeoBonn2018, Living Earth, Bonn.
- Roden, V., Hausmann, I.M., Nützel, A., Reich, M., & Kießling, W. (2018). Towards an assessment of true diversity in fossil ecosystems. In 1st Palaeontological Virtual Congress. Book of abstracts. Palaeontology in a virtual era (pp. 75). Valencia.
- Roden, V., & Kießling, W. (2017). Reliable estimates of beta diversity with incomplete sampling. In GSA Annual Meeting in Seattle, Washington, USA - 2017. Seattle, USA.
- Roden, V., & Kießling, W. (2017). Abundant taxa determine beta diversity. In Martin Zuschin Mathias Harzhauser Susanne Mayrhofer (Eds.), Taphos 2017 Vienna - Programme and Abstracts. Wien.
- Roden, V., & Kießling, W. (2016). A simpler method of determining beta diversity to address diversity patterns in the Cassian Formation (Triassic, Dolomites). In Fossils: Key to evolution, stratigraphy and palaeoenvironments - Programme, Abstracts, Field trip guides. Dresden.
- Kießling, W., & Eichenseer, K. (2014). The scaling law of climate change and its relevance to assessing (palaeo)biological responses. Paper presentation, Vienna, AT.
Miscellaneous
- Poertner, H.-O., J. Scholes, R., Agard, J., Archer, E., Arneth, A., Bai, X.,... Ngo, H. (2021). Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change.